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ABSTRACT: There is an urgent need (recognized in FDA guidance, 2018)
to optimize the dose of medicines given to patients for maximal drug
efficacy and limited toxicity (precision dosing), which can be facilitated by
quantitative systems pharmacology (QSP) models. Accurate quantification
of proteins involved in drug clearance is essential to build and improve QSP
models for any target population. Here we describe application of label-free
proteomics in microsomes from 23 human livers to simultaneously quantify
188 enzymes and 66 transporters involved in xenobiotic disposition,
including 17 cytochrome P450s (CYPs), 10 UDP-glucuronosyltransferases
(UGTs), 7 ATP-binding cassette (ABC) transporters, and 11 solute carrier
(SLC) transporters; six of these proteins are quantified for the first time.
The methodology allowed quantification of thousands of proteins, allowing
estimation of sample purity and understanding of global patterns of protein
expression. There was overall good agreement with targeted quantification
and enzyme activity data, where this was available. The effects of sex, age, genotype, and BMI on enzyme and transporter
expression were assessed. Decreased expression of enzymes and transporters with increasing BMI was observed, but a tendency
for older donors to have higher BMIs may have confounded this result. The effect of genotype on enzymes expression was,
however, clear-cut, with CYP3A5*1/*3 genotype expressed 16-fold higher compared with its mostly inactive *3/*3
counterpart. Despite the complex, time-consuming data analysis required for label-free methodology, the advantages of the
label-free method make it a valuable approach to populate a broad range of system parameters simultaneously for target patients
within pharmacology and toxicology models.

KEYWORDS: human liver microsomes, cytochrome P450, uridine 5′-diphosphate-glucuronosyltransferase,
ATP-binding cassette transporters, solute carrier transporters, label-free proteomics

■ INTRODUCTION

Quantitative systems pharmacology (QSP) models, such as
physiologically based pharmacokinetic (PBPK) models, are
increasingly used to predict appropriate doses of drugs for
patient groups, especially groups that may not be assessed
during clinical trials (young, old, pregnant, and chronically
diseased patients, for example). Over 30 recent drug labels
have benefitted from model-informed decisions about dosing
in lieu of clinical studies.1,2 Publication of the final FDA
guidance on using PBPK models is another indication of the
fact that these models are here to stay.3

In the human liver, cytochrome P450 (CYP) and uridine 5′-
diphosphate-glucuronosyltransferase (UGT) enzymes, in
combination with uptake and efflux transporters, play a vital
role in the disposition of most drugs and xenobiotics. Because
of factors such as genetic predisposition, lifestyle choices, age,

and disease, the expression of these proteins varies
considerably among individuals.4 As a result, drug treatments
can vary in efficacy from patient to patient and toxic side
effects may develop in certain populations.4 The reliable
prediction of drug behavior and safety across all populations is
of paramount importance to the design and development of
novel drugs and is of considerable value to pharmaceutical
industries and regulatory authorities.1,5

The abundance of specific proteins in the human liver has
been measured in either tissue lysates or enriched microsomal
fractions, using targeted mass spectrometry-based quantitative
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proteomics approaches, which require the use of stable
isotope-labeled standards, either in the form of concatenated
proteotypic peptides (QconCAT) or as synthetic peptides
(AQUA).6−11 The crucial requirement of such targeted
proteomic approaches is a set of unique peptides per protein
under study with proven flyability in the mass spectrometer.12

The use of targeted proteomics approaches for the
quantification of CYPs, UGTs, and transporters has resulted
in disparities in reported protein abundances.13 This can be
attributed to interlaboratory variability in the choice of
standard peptides. In addition, differences in sample
preparation methods and the technical difficulties presented
by these proteins, particularly the high level of sequence
similarity between the proteins within their respective
subfamilies, have obscured genuine interindividual differences
in protein expression.13 The lack of a standardized, systematic
methodology for all steps in the quantification of protein
abundance, from tissue collection to mass spectrometric
analysis, has recently been recognized as a major obstacle to
generating consistent proteomic data.14,15 A further inherent
limitation of targeted proteomics is that the number of proteins
that can be simultaneously analyzed is limited. Therefore, a
comprehensive investigation of all relevant drug metabolizing
enzymes and transporters using targeted proteomics is time-
consuming and costly. The resource implications of targeted
versus untargeted analysis have been previously analyzed and
shown that the targeted methodology is not economically
justified when a comprehensive analysis of drug metabolizing
enzymes and transporters is desired.16 Label-free proteomic
quantification of drug metabolizing enzymes and transporters
is therefore an attractive alternative. Label-free methods do not
require the prior manual selection of unique peptides for
protein quantification; instead, protein quantification is based
on the intensities of peaks corresponding to all unique peptides
detected by the mass spectrometer.17,18 The advantage of
label-free methods is that they enable the simultaneous
quantification of large numbers of proteins allowing a
systems-level understanding of the protein complement within
an individual and across populations.19 However, measurement
of low abundance proteins using global proteomic methods
still requires further optimization, and reported correlations
between targeted and global analyses are less well-estab-
lished.15,19

We aimed in this study to quantify a wide range of proteins
relevant to the fate of drugs in humans. To our knowledge, the
current report represents the most comprehensive analysis of
the abundance of drug metabolizing enzymes, particularly,
CYPs and UGTs, and drug transporters in human liver
microsomal fractions to date using a label-free quantitative
proteomic approach. This systematic study allows the
evaluation of the global proteomic profile of the samples as
well. This allowed an assessment of the purity of the
microsomal samples. In addition, we were able to investigate
the implication of the dynamic range of the proteome on the
comparative analysis of protein abundance between individu-
als, and correlations between protein abundance and in vitro
enzymatic activity and demographic characteristics.

■ MATERIALS AND METHODS
Chemicals. Unless otherwise indicated, all chemicals were

supplied by Sigma-Aldrich (Poole, Dorset, U.K.) with the
highest purity available. Sequencing grade modified trypsin was
supplied by Promega (Southampton, U.K.). All solvents were

HPLC grade and supplied by ThermoFisher Scientific (Paisley,
U.K.).

Human Liver Microsomal Samples. Human liver
microsomes (HLMs) from nontumorous liver samples (n =
23) were provided by Pfizer (Groton, CT, USA). Suppliers of
these samples were Vitron (Tucson, AZ, USA) and BD
Gentest (San Jose, CA, USA). Demographic (ethnicity, age,
and gender), clinical (medical history, medications, smoking
history, and alcohol consumption), and genotype information
on these donors were also provided by Pfizer (Supplementary
Table 1). The 23 donors (10 females, 13 males) had an
average age of 48.7 years (range 27−66 years) and an average
BMI of 29.7 kg m−2 (range 18.0−39.6 kg m−2), including 9
overweight and 9 obese donors. Ethical approval was obtained
by the suppliers, and the sample donors were anonymized.
These samples have previously been analyzed by targeted
quantitative proteomics.10,11,20 In the present study, label-free
quantification was applied to these samples according the
workflow shown in Supplementary Figure 1. Liver microsomal
fractions were prepared using differential centrifugation
methodology as previously described.21 Briefly, low speed
centrifugation (10000g) was performed to separate cellular
debris from the crude cytosolic fraction made up of cytosolic
components and low weight organelles. High speed
centrifugation (100000g) was performed to pellet the micro-
somal fraction.

Protein Content Quantification and Sample Prepara-
tion. Protein content in the HLM samples was estimated by a
spectrophotometric protein assay using the Bradford reagent
(ThermoFisher Scientific, Hemel Hempstead, UK).22 Analysis
was made in triplicate according to the manufacturer’s protocol
using bovine serum albumin (BSA) as a standard. Microsomal
fractions from 23 individuals were selected in this study. To
enable absolute quantification by mass spectrometry, 100 μg of
each HLM fraction was spiked with an internal standard
protein mixture containing 0.3 μg of equine myoglobin, 0.15
μg of bovine cytochrome c, and 0.2 μg of BSA. These
nonhuman proteins were selected because their low similarity
with their human counterparts minimizes interference. To each
fraction containing the standards, sodium deoxycholate was
added to achieve a final concentration of 10% (w/v). The
mixture was mixed well and incubated at room temperature for
10 min.
For protein digestion, a the filter-aided sample preparation

(FASP) method was used as previously described with minor
modifications, in order to optimize for microsomal sam-
ples.14,23 Before sample addition, Amicon Ultra 0.5 mL
centrifugal filters at 3 kDa molecular weight cutoff Merck
Millipore, Nottingham, U.K.) were conditioned by briefly
centrifuging 400 μL of 60% (v/v) methanol at 14000g at room
temperature. The deoxycholate-solubilized HLM samples were
then transferred to the conditioned filter units. A final
concentration of 100 mM 1,4-dithiothreitol (DTT) was
added to the protein mixture, which was incubated at 56 °C
for 40 min. Following incubation, the samples were centrifuged
at 14000g at room temperature for 20 min. Alkylation was
performed with 50 mM iodoacetamide in the dark for 30 min
at room temperature.
After alkylation, deoxycholate removal was performed by

buffer exchange using two successive washes with 8 M urea in
100 mM Tris-HCl (pH 8.5). To reduce urea concentration,
three additional washes were performed using 1 M urea in 50
mM ammonium bicarbonate (pH 8.5). Protein digestion was
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achieved by adding trypsin (trypsin/protein ratio 1:25)
followed by overnight incubation at 37 °C. Peptides were
recovered by centrifugation (14000g, 20 min) first by elution
using100 mM ammonium bicarbonate (pH 8.5) followed by a
second elution using 0.5 M sodium chloride. The eluted
peptides were dried in a vacuum concentrator. The dried
peptides were resuspended in loading buffer (3% (v/v)
acetonitrile in water with 0.1% (v/v) trifluoroacetic acid)
and desalted using a C18 column (Nest group, USA). The
peptides were again dried using a vacuum concentrator and
stored at −20 °C until mass spectrometric analysis.
Liquid Chromatography and Tandem Mass Spec-

trometry (LC-MS/MS). Dried peptides samples were
resuspended in 100 μL of loading buffer, and 1.0 μL of each
sample was loaded on an UltiMate 3000 rapid separation liquid
chromatography (RSLC; Dionex, Surrey, U.K.) coupled to an
online Q Exactive HF Hybrid Quadrupole-Orbitrap mass
spectrometer (ThermoFisher Scientific, Bremen, Germany).
The samples were analyzed in analytical duplicates (46 runs in
total). Peptides were reversed-phase separated on a PepMap
RSLC C18 column (2 μm particles, 100 Å, 75 μm inner
diameter, 50 cm length) (Thermo Scientific, U.K.) preceded
by a C18 PepMap100 μ-precolumn (5 μm, 100 Å, 300 μm
inner diameter, 5 mm length) (ThermoFisher Scientific, UK).
A multistep gradient was used from 4% to 40% buffer B (80%
(v/v) acetonitrile with 0.1% (v/v) formic acid) for 100 min at
a flow rate of 300 nL min−1. The composition of buffer A was
HPLC grade water containing 0.1% (v/v) formic acid. The
sensitivity and m/z accuracy of the mass spectrometer was
evaluated using a positive ion calibration solution (Thermo-
Fisher Scientific, Paisley, U.K.). The performance of the liquid
chromatographer and mass spectrometer was evaluated using
HeLa protein digest standard (ThermoFisher Scientific,
Paisley, U.K.) over a 90 min gradient. Data were acquired in
the positive ion mode in a data-dependent manner alternating
between survey MS and MS/MS scans. MS scans were
performed over the range of 100−1500 m/z, with 60 000
resolution, automatic gain control (AGC) of 3 × 106, and 100
ms maximal injection time. The top 18 precursor ions were
sequentially selected for fragmentation using higher-energy
collisional dissociation (HCD) with 28% normalized collision
energy and precursor isolation window of 1.2 m/z. MS/MS
scans were acquired at 30 000 resolution, AGC of 5 × 104, and
120 ms maximal injection time. Dynamic exclusion was set to
30 s.
LC-MS/MS Data Analysis. Protein and peptide identi-

fication and quantification were performed using Progenesis
v4.0 (Nonlinear Dynamics, Newcastle-upon-Tyne, U.K.) and
Mascot (Matrix Science, London, U.K.). The Progenesis
software was used for precursor ion alignment based on
retention time. Following precursor alignment, data were
exported as Mascot generic files (mgf), and subsequently
proteins were identified using Mascot. Proteins were identified
by searching against a reference human proteome database
containing 71 599 entries (UniProt, May 2017). Using Mascot,
the precursor mass tolerance was set to 5 ppm, fragment mass
tolerance was set to 0.5 Da, cysteine carbamidomethylation
was considered as fixed modification, and oxidation of
methionine and deamidation of asparagine/glutamine were
considered as variable modifications. Trypsin was set as the
proteolytic enzyme, and one missed cleavage was allowed. The
list of identified proteins was imported back into Progenesis,
and the identified proteins were matched with their abundance

quantified using BSA as the internal standard of choice. Among
the three proteins used as internal standards, BSA was selected
because the amount of BSA spiked in to each sample was
empirically in the right dynamic range of the proteins of
interest. The abundance of each relevant protein was
quantified by the “Hi-N” method.24 In this method, the peak
intensity associated with the N most abundant nonconflicting
peptide ions was automatically selected for quantification. The
mean value of the intensities of the three most intense unique
peptides of the protein of interest relative to the internal
standard was used for the calculation of the proportionality
factor.24 The abundance of the protein of interest was
calculated by multiplying the proportionality factor of each
protein by the known abundance of BSA. Progenesis, in
common with other mass spectrometry software, often
identifies as “unique” peptides that are actually present in
more than one cytochrome P450 or UGT enzyme. To
overcome this limitation, the uniqueness of peptides from
CYPs and UGTs was analyzed using pBLAST search (NCBI,
USA). The abundance of each CYP and UGT protein detected
in the HLM samples was recalculated manually using the
unique peptides identified using pBLAST. The abundance was
expressed in units of pmol mg−1 microsomal protein.

Protein Subcellular Localization and Annotation of
Enzymes and Transporters. To assess the purity and
makeup of the microsomal fractions, the subcellular local-
ization of all identified proteins (n = 2208) was annotated
according to three databases, Gene Ontology (GO), UniProt,
and the Human Protein Atlas (HPA), by searching the gene
names against these repositories. Where there was evidence of
expression in more than one subcellular component, the
protein was assigned to all relevant localizations. The identified
enzymes and transporters were checked for evidence of
expression in hepatic tissue at both the RNA and protein
levels against the NCBI human database and HPA; only
hepatic proteins were included in subsequent analysis. In
addition, the role of hepatic enzymes and transporters was
identified using UniProt and NCBI databases, leading to
selection of proteins involved in xenobiotic or drug metabolism
and disposition. Only drug metabolizing enzymes and drug
transporters quantifiable in at least one-third of the samples (n
≥ 7) were considered for subsequent statistical analysis.

Cross-Methodology Assessment of Measured En-
zyme Abundance Levels. To establish the accuracy of the
developed label-free assay, the abundance levels of enzymes
measured in this study were compared to previously
determined concentrations in matched samples using two
targeted proteomic methodologies, QconCAT in the case of
CYPs11 and UGTs25 and AQUA in the case of UGTs.10

Assessment of CYP and UGT Abundance against
Enzymatic Activity. To validate the proteomic method,
assessment of direct correlation between the quantified
abundance of major drug metabolizing CYPs and UGTs and
their enzymatic activity was performed. Metabolite appearance
rates for CYPs (1A2, 2B6, 2C9, 2C19, 2D6, 3A4, and 3A5)
and for UGTs (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, and 2B15)
in these samples were kindly provided by Pfizer (Groton, CT,
USA). Cytochrome P450 substrates26 were phenacetin
(CYP1A2), bupropion (CYP2B6), diclofenac (CYP2C9), S-
mephenytoin (CYP2C19), bufuralol (CYP2D6), and testoster-
one (CYP3A4). CYP3A5 activity was measured using
midazolam in the presence of a CYP3cide to silence
CYP3A4.27 UGT substrates20,28 were β-estradiol (UGT1A1),
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Figure 1. Global proteomic analysis of human liver microsomes (n = 23 samples), showing the subcellular localization of identified proteins (A)
and the origin of the 20 most abundantly expressed proteins mapped along with cell and organelle markers (B), showing that this fraction is
contaminated due to the presence of different cell types (cell markers: ASGR1/2, hepatocytes; STAB1/2, liver endothelial cells) and
cosedimentation of several cellular components (organelle markers: CANX, endoplasmic reticulum; ATP1A1/CD81, plasma membrane; COX4,
mitochondria, PEX14, peroxisomes); the 20 most abundant proteins were of three origins, reticular, mitochondrial, and cytoplasmic/cytosolic. The
cumulative amount of the quantified proteins (C), representing assessment of purity of the microsomal fraction, shows contribution of the 20 most
highly abundant proteins to total protein amount (22%−32%). A large number of drug and xenobiotic metabolizing and transporting proteins were
identified in the HLM samples (D), among which cytochrome P450 enzymes, UGTs, ATP-binding cassette (ABC), and solute carrier (SLC)
transporters (E) are of particular interest. In panel A, the numbers of proteins in each subcellular component is shown along with percentage
contribution to the total number of proteins; these percentages add up to more than 100% due to expression of several proteins in more than one
subcellular location. ABC, ATP-binding cassette transporters; CYP, cytochrome P450 enzymes; DME, drug/xenobiotic metabolizing enzymes; ER,
endoplasmic reticulum; PM, plasma membrane; SLC, solute carrier transporters; UGT, uridine 5′-diphospho-glucuronosyltransferases.
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chenodeoxycholic acid (UGT1A3), trifluoperazine
(UGT1A4), 5-hydroxytryptophol (UGT1A6), propofol
(UGT1A9), zidovudine (UGT2B7), and S-oxazepam
(UGT2B15).
Statistical Analysis. All statistical analysis of the data was

performed using Microsoft Excel 2010, GraphPad Prism v7.03
(La Jolla California, USA), and R v3.4.3. Nonparametric
statistics were used since a considerable proportion of the data
set did not follow normal distribution. The normality of data
distribution was assessed using three tests: D’Agostino−
Pearson, Shapiro−Wilk, and Kolmogorov−Sminov normality
tests. The Spearman rank-order correlation (Rs) test, with t-
distribution of the p-values, was used to assess enzyme
abundance−activity correlation and intercorrelation between
protein abundance levels. The level of scatter of data was
evaluated by linear regression (R2). The relationship between
age and expression level was also assessed using these
correlation tests. Differences between abundances generated

by targeted (QconCAT/AQUA) and label-free methods were
assessed using Mann−Whitney U-test and Kolmogorov−
Sminov cumulative distribution test. Bias and scatter of the
label free, AQUA, and QconCAT data sets were assessed using
average fold error (AFE) and absolute average fold error
(AAFE), respectively. Differences between genotypes and BMI
categories were assessed using nonparametric Kruskal−Wallis
ANOVA followed by post hoc Mann−Whitney U-test. The p-
value cutoff for statistical significance was set at 0.05, which
was Bonferroni-corrected when iterative tests were required to
generate correlation matrices. Hierarchical cluster analysis
(HCA) and principal components analysis (PCA) were
performed using proteome-wide similarity data based on
percentage identical peptide (PIP) and percentage identical
protein (PIPr)23 values across the 23 samples. Graphs were
generated using GraphPad Prism v7.03 and R v3.4.3.

Figure 2. Scatter plots and pie charts representing the abundance of drug-metabolizing cytochrome P450 (A, C) and UGT (B, D) enzymes, scatter
plots of the abundance of ABC (E) and SLC (F) drug transporters, and bar chart of the numbers of quantified enzymes and transporters involved
in the metabolism and transport of drugs and endogenous compounds (G). In panels A, B, E, and F, the red bars represent mean abundance levels
expressed in picomoles per milligram of microsomal protein. In panel G, CYP, cytochrome P450 enzymes; UGT, uridine 5′-diphospho-
glucuronosyltransferases; ABC, ATP-binding cassette transporters; SLC, solute carrier transporters; drug and endogenous refer to substrates of
enzymes and transporters.
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■ RESULTS

General Outcome. Across the twenty-three liver micro-
somal fractions, a total of 2208 proteins were quantified with a
minimum of two unique peptides each and a false discovery
rate of ≤1% at the protein and peptide levels. In each sample,
an average of 1994 proteins was quantified (range 1836−2152
proteins). The present study represents an increase of
approximately 30% of ADME proteins quantified in liver
microsomal samples when compared with previously reported
data.15,29

Evaluation of the Reproducibility of the Proteomics
Data. Analytical replicates were evaluated in two ways. First,
high reproducibility was seen in the quantified abundance of
identical proteins across analytical replicates as the coefficient
of determination from regression analysis (R2) varied between
0.79 and 0.99, with a slope of approximately one. In addition,
categorical evidence was used to assess the similarity between
peptides identified in the analytical replicates at the level of the
primary analytes (peptides) using the descriptor percentage
identical peptides (PIP) as previously described.23 In each
sample, a very high similarity was seen in the peptides
identified in the analytical replicates with PIP varying between
92% and 100%.The details of replicate evaluation are provided
in Supplementary Table 2. Values in this range point to a high
degree of consistency in both sample preparation and
instrument performance and are reassuring, especially in view
of the long mass spectrometry run required by 23 samples in
duplicate.
Assessment of the Quality of Liver Microsomal

Fractions. Subcellular localization analysis of the samples
predicted that approximately 50% of the quantified proteins
were localized in the endoplasmic reticulum and the plasma
membrane. The remaining proteins were largely predicted to

be localized in the cytoplasm or cytosol, the mitochondria, and
the nucleus (Figure 1A). This prediction was confirmed by the
presence of markers specific for these organelles. Although
calnexin (CANX), the specific marker for endoplasmic
reticulum membrane, was abundant in the global microsomal
protein profile, markers for mitochondrial membrane (cyto-
chrome c oxidase; COX4), plasma membrane (sodium/
potassium-transporting ATPase subunit alpha-1 and cluster
of differentiation 81; ATP1A1 and CD81) and peroxisomal
membrane (peroxisomal membrane protein; PEX14) were also
present (Figure 1B).30−32 Established protein markers for
hepatocytes, asialoglycoprotein receptor 1 (ASGR1) and
asialoglycoprotein receptor 2 (ASGR2), were highly expressed
in the microsomal preparation,33,34 but markers specific to
nonparenchymal endothelial cells (stabilin 1 and 2; STAB1/2)
were also present, indicating some heterogeneity of cell type.35

Markers associated with other cell types such as Kupffer cells,
Ito cells, and intrahepatic cholangiocytes were not found. The
heterogeneity of the microsomal samples makes this analysis
especially important, as variation in contamination would have
a profound effect on the apparent abundance of proteins
involved in drug metabolism and transport when expressed as
pmol of protein per microgram of microsomal protein, as is
conventional.29,36,37

An analysis of the 20 most abundant proteins across all
microsomal fractions was undertaken to determine whether the
contaminants could affect the quantification of proteins in the
microsomal fractions. In this study, 15 out of the 20 most
abundant proteins quantified in the microsomal fractions were
predicted to be localized in the endoplasmic reticulum (Figure
1B). The most abundant protein in all microsomal fractions
was either liver carboxylesterase 1 (CES1) or epoxide
hydrolase 1 (EPHX1), both reticular proteins, at average

Table 1. Expression Levels of 17 CYP Enzymes, NADPH-Cytochrome P450 Reductase (POR), and Cytochrome-b5 (CYB5A)
with Known Involvement in Drug Modification Pathways in Human Liver Microsomal Fractionsa

enzyme median (pmol mg−1) MADb (pmol mg−1) mean ± SDc (pmol mg−1) CVd (%) range (min−max) (pmol mg−1) ne

CYP1A2 11.31 4.80 14.14 ± 13.02 92.08 1.11−56.42 23
CYP2A6 23.19 13.80 25.62 ± 19.41 75.78 0.71−69.68 21
CYP2A13 1.50 0.80 2.07 ± 2.07 100.15 0.04−5.32 7
CYP2B6 5.36 3.40 6.78 ± 5.99 88.41 0.48−22.63 23
CYP2C8 24.59 15.90 29.78 ± 18.65 62.61 4.18−67.52 23
CYP2C9 32.60 10.60 37.53 ± 20.67 55.08 8.49−87.20 23
CYP2C18 0.55 0.30 1.60 ± 2.44 152.83 0.12−9.66 20
CYP2C19 1.38 1.10 3.43 ± 3.59 104.49 0.15−11.62 17
CYP2D6 4.44 2.40 6.05 ± 5.11 84.49 1.74−20.54 15
CYP2E1 50.69 15.00 54.38 ± 24.67 45.36 26.94−127.26 23
CYP2J2 0.53 0.10 0.64 ± 0.43 66.97 0.11−1.59 17
CYP3A4 25.46 11.20 28.52 ± 20.67 72.47 2.58−93.71 23
CYP3A5 5.80 5.20 8.63 ± 9.51 110.24 0.19−27.78 23
CYP3A7 1.35 1.30 5.54 ± 9.63 173.80 0.10−33.73 13
CYP4F2 10.97 2.60 12.22 ± 5.74 46.99 2.98−22.36 23
CYP4F11 4.54 1.10 5.06 ± 2.47 48.86 1.37−13.69 23
CYP4F12 0.58 0.45 1.23 ± 1.51 122.27 0.06−5.27 18
CYB5Af 160.05 23.40 169.19 ± 49.63 29.33 88.69−260.67 23
PORf 38.86 10.10 41.17 ± 14.20 34.49 18.53−74.73 23

aProtein expression is represented by the median, the median absolute deviation (MAD), the mean, the standard deviation of the mean (SD), the
coefficient of variation (CV), and the range (min−max). Proteins highlighted in italic have been quantified for the first time in this study.
Abundance of CYPs is expressed in pmol mg−1 of liver microsomal protein. bMedian absolute deviation is a nonparametric measure of variability
around the median. cStandard deviation describes variability around the mean where data is expected to be extracted from a normally distributed
population. SD describes both technical and biological variability. dCoefficient of variation calculated as a percentage (CV = SDi/x̅i) for each
enzyme i. eNumber of human liver microsomal samples. fCytochrome P450 auxiliary proteins.
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concentrations of 360 and 247 pmol mg−1 liver microsomal
protein, respectively. The 20 most abundant proteins
constituted 22%− 32% (average 24%) of the quantified
microsomal fraction (Figure 1C).
Assessment of the Abundance of Cytochrome P450

and Uridine 5′-Diphosphate-Glucuronosyltransferase
UGT Enzymes and Drug Transporters. Cytochrome
P450 (CYP) and uridine 5′-diphosphate-glucuronosyltransfer-
ase (UGT) enzymes are the principal enzymes responsible for
the metabolism of drugs and xenobiotics. Of these, 188
enzymes and 66 transporters were quantified in at least seven
individuals as shown in Supplementary Tables 8−11. These
include 26 CYPs, 11 UGTs, 12 ABC transporters, and 52 SLC

transporters (Figure 1D,E). Of the quantified CYPs, UGTs and
transporters, 17 CYPs, 10 UGTs, 7 ABC transporters and 11
SLC transporters are known to be associated with drug
clearance based on pharmacological and toxicological evidence.
Hepatic microsomal abundance levels of these enzymes and
transporters are shown in Figure 2 and summarized in Tables
1−3. Where literature values were available, they were
compared with the present study and found to be in broad
agreement (Supplementary Tables 4−7). The most highly
expressed CYPs were CYP2E1, CYP2C9, CYP2C8, CYP3A4,
and CYP2A6 (Figure 2A).6,38−40 The most highly expressed
UGT was UGT2B7, followed by UGT1A4, UGT2B4,
UGT1A1, and UGT2B15 (Figure 2B). The pie charts in

Table 2. Expression Levels of 10 UGT Enzymes with Known Involvement in Drug Glucuronidation in Human Liver
Microsomal Fractionsa

enzyme median (pmol mg−1) MADb (pmol mg−1) mean ± SDc (pmol mg−1) CVd (%) range (min−max) (pmol mg−1) ne

UGT1A1 12.29 4.60 17.13 ± 12.81 74.79 2.08−53.64 23
UGT1A3 1.36 0.80 2.21 ± 2.55 115.72 0.33−11.58 23
UGT1A4 22.70 8.90 26.06 ± 12.41 47.63 11.18−49.88 23
UGT1A6 7.89 5.50 9.64 ± 7.69 79.81 0.90−29.10 23
UGT1A9 5.19 2.40 7.18 ± 6.47 90.13 1.07−25.00 23
UGT2B4 24.57 10.10 24.64 ± 12.06 48.95 8.36−50.58 23
UGT2B7 56.17 14.90 53.97 ± 22.84 42.31 10.86−100.37 23
UGT2B10 1.92 1.40 3.99 ± 4.29 107.71 0.39−13.84 23
UGT2B15 15.42 5.60 16.18 ± 7.85 48.54 4.80−35.12 23
UGT2B17 5.43 3.45 7.81 ± 7.93 101.47 0.38−26.50 16

aProtein expression is represented by the median, the median absolute deviation (MAD), the mean, the standard deviation of the mean (SD), the
coefficient of variation (CV), and the range (min−max). Abundance of UGTs is expressed in pmol mg−1 of liver microsomal protein. bMedian
absolute deviation is a nonparametric measure of variability around the median. cStandard deviation describes variability around the mean where
data is expected to be extracted from a normally distributed population. SD describes both technical and biological variability. dCoefficient of
variation calculated as a percentage (CV = SDi/x̅i) for each enzyme i. eNumber of human liver microsomal samples.

Table 3. Expression Levels of 18 Transporters with Known Involvement in Drug Clearance in Human Liver Microsomal
Fractionsa

transporter median (pmol mg−1) MADb (pmol mg−1) mean ± SDc (pmol mg−1) CVd (%) range (min−max) (pmol mg−1) ne

ATP-Binding Cassette Transporters
ABCA8 0.27 0.10 0.28 ± 0.15 51.96 0.08−0.53 13
ABCB1 0.18 0.09 0.47 ± 0.77 162.43 0.04−2.95 16
ABCB4 0.36 0.25 0.50 ± 0.41 81.92 0.09−1.21 8
ABCB11 0.22 0.13 0.28 ± 0.21 76.26 0.03−0.90 21
ABCC2 0.54 0.25 0.73 ± 0.49 67.93 0.22−1.55 12
ABCC3 0.25 0.10 0.74 ± 1.40 188.35 0.11−5.42 18
ABCC6 0.70 0.30 1.02 ± 1.47 145.01 0.15−6.60 21

Solute Carrier Transporters
SLC16A2 0.33 0.20 0.47 ± 0.35 73.27 0.12−1.04 8
SLC22A1 1.02 0.40 1.35 ± 0.93 69.19 0.18−4.09 22
SLC22A7 0.43 0.25 0.79 ± 0.87 110.53 0.15−3.36 14
SLC22A9 0.77 0.35 0.88 ± 0.48 54.35 0.36−1.75 14
SLC22A18 1.31 0.50 1.52 ± 0.82 54.04 0.38−3.15 21
SLC29A1 0.18 0.10 0.18 ± 0.08 43.49 0.08−0.35 13
SLC31A1 1.46 0.40 1.61 ± 0.69 42.72 0.62−3.62 21
SLC29A3 0.04 0.02 0.06 ± 0.04 66.02 0.02−0.14 11
SLCO1B1 1.98 0.60 2.45 ± 1.59 64.65 0.96−8.04 23
SLCO1B3 0.47 0.20 0.77 ± 0.83 107.93 0.12−3.25 14
SLCO2B1 0.63 0.30 0.89 ± 0.58 65.08 0.12−2.36 19

aProtein expression is represented by the median, the median absolute deviation (MAD), the mean, the standard deviation of the mean (SD), the
coefficient of variation (CV), and the range (min−max). Proteins highlighted in italic have been quantified for the first time in this study.
Abundance of transporters is expressed in pmol mg−1 of liver microsomal protein. bMedian absolute deviation is a nonparametric measure of
variability around the median. cStandard deviation describes variability around the mean where data is expected to be extracted from a normally
distributed population. SD describes both technical and biological variability. dCoefficient of variation calculated as a percentage (CV = SDi/x̅i) for
each enzyme i. eNumber of human liver microsomal samples.
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Figure 2C,D show the relative abundance distribution of CYPs
and UGTs involved in drug metabolism in the liver, which are
very similar to distributions reported in recent data
analysis.41,42

The most abundant ABC transporter is ABCC6 (Figure 2E)
and SLCO1B1 is the most abundant transporter in the human
liver (Figure 2F).6 Although we successfully quantified
ABCB5, ABCG8, and SLC47A1, the expression levels of
these enzymes are not reported in Figure 2E,F and Table 3 as
these proteins were quantified in fewer than seven individuals.
Enzymes and transporters involved in the metabolism and
clearance of endogenous compounds were also quantified,
including 9 CYPs, 1 UGT, 5 ABC transporters, and 41 SLC
transporters (Figure 2G). Individual data for all enzymes and
transporters quantified in this study are provided in
Supplementary Tables 8−11. The abundance of enzymes and
transporters was measured in units of pmol mg−1 microsomal
protein.

Comparison of CYP and UGT Abundance in Label-
Free and Targeted Proteomics Measurements. The
HLM fractions here analyzed by the label-free approach have
previously been used to quantify the abundance of CYP and
UGT enzymes using targeted proteomic approaches,10,11

presenting a unique opportunity for comparison of these
proteomic workflows. The CYP enzymes have previously been
quantified using a QconCAT-based strategy,9 in which labeled
standard peptides are concatenated together in an artificial
protein and released by tryptic digestion. The UGTs have also
been quantified by targeted approach but using individual
isotopic-labeled (AQUA) peptides as standards.8

Comparison of the median and distribution of CYP
abundances quantified previously by the targeted QconCAT
strategy11 with the label-free approach used in this study
indicated that there was very good agreement between the
studies across most of the quantified CYP enzymes, with less
good but still reasonable agreement for CYP2A6, CYP2B6, and
CYP3A4 (Figure 3A and Suppmementary Figure 2). Analysis

Figure 3. Comparison of abundance values measured using the label-free strategy relative to two targeted methods (AQUA and QconCAT) for
cytochrome P450 enzymes (A, B) and UDP-glucuronosyltransferases (C, D) in matched liver microsomal samples (n = 21). In panels A and C,
enzyme abundances are shown as box and whiskers plots with the whiskers representing the ranges, the boxes representing the 25th and 75th
percentiles, the lines showing the medians, and the + signs denoting the means. Mann−Whitney tests were used to assess differences with
statistically significant discrepancies shown; *P < 0.05; **P < 0.01; ***P < 0.001. In panels B and D, fold error values are plotted as a frequency
distribution showing lower values generated by label-free quantification. Fold errors are calculated as x1/x2 ratios for label free measurements (x1)
relative to targeted measurements (x2) using either QconCAT (C) or AQUA and QconCAT (D). The light-blue shaded area indicates values
within 3-fold, considered as generally interchangeable. AFE, average fold error; AAFE, absolute average fold error; abundance levels are expressed
in picomoles per milligram of HLM protein.
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of fold-errors for individual microsomal samples assessed using
the developed method relative to the targeted approach
revealed that approximately 70% of the values generated by the
two methods were within 3-fold20 and 21% of values were
within the bioequivalence range (80%−125%).43 Both bias
(indicated by a value of the average fold error, AFE, different

from 1) and scatter (indicated by an absolute average fold
error, AAFE, higher than 1) were observed (Figure 3B).
UGT enzymes had previously been quantified by two

targeted approaches, based on AQUA and QconCAT
standards (Figure 3C Suppmementary Figure 2). The
quantification of UGTs is extremely challenging because of

Figure 4. Correlation of the abundance levels of cytochrome P450 (A) and uridine 5′-diphospho-glucuronosyltransferase enzymes (B) measured
using label-free global proteomics against catalytic activity. Strong and significant correlations (Rs > 0.70, P < 0.008) with very limited scatter (R2 >
0.50) are shown in red; moderate correlations (Rs > 0.50, P < 0.008) with limited scatter (R2 > 0.30) are shown in blue. CYP substrates: CYP1A2
(phenacetin), CYP2B6 (bupropion), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP3A4 (testosterone), CYP3A5
(midazolam). UGT substrates: UGT1A1 (β-estradiol), UGT1A3 (chenodeoxycholic acid), UGT1A4 (trifluoperazine), UGT1A6 (5-
hydroxytryptophol), UGT1A9 (propofol), UGT2B7 (zidovudine), UGT2B15 (S-oxazepam). Abundance is measured in units of picomole
enzyme per milligram of microsomal protein, and activity is measured in units of nanomole per minute per milligram of microsomal protein. The
CYP3A5 activity was measured in the presence of a CYP3cide to silence CYP3A4.

Figure 5. Covariates of expression of hepatic cytochrome P450 and UGT enzymes measured using the label-free proteomic strategy. The variables
assessed were sex (A, B), age (C), genotype (D), and body mass index, BMI (E). Sex did not affect expression with no significant differences
between male and female donors (A and B). An overall declining trend with age was observed for all enzymes, with little statistical significance
except for a few UGT examples (C). Genotype was a significant factor for CYP3A5 expression with *1/*3 genotype being expressed at higher
levels than *3/*3 (16-fold higher). Only borderline significant difference in expression was seen between CYP2D6 genotypes (C). There was an
overall declining trend of expression with BMI with differences of expression observed between normal weight, overweight, and moderately obese
patients (D) assessed using ANOVA and Mann−Whitney test for group and pairwise analysis. In panels A, B, and D, abundance data are presented
as mean ± SD. In panel C, Rs is Spearman rank-order correlation coefficient. In panel E, the boxes are the 25th and 75th percentiles, the whiskers
are the ranges, the lines are the medians, and the + signs are the means. The scale inset on the right is the BMI scale for the three categories
(normal BMI 18.5−25; overweight BMI 25−30; obese BMI > 30 kg m−2); *P < 0.05; **P < 0.01; ***P < 0.001.
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(a) the very low abundance of some of these proteins, (b) the
fact that they are membrane-bound, and (c) the shared peptide
sequences between UGTs, and hence, the difficulty in
identifying unique peptides. Overall the present experiments
reported lower abundances for the UGTs than either of the
targeted methods, although again the values determined here
fell within the range of UGT abundance reported in the
literature (Supplementary Table 5) and a large proportion
(approximately 64%) of values were within 3-fold, with a
smaller proportion (17%) within the bioequivalence range.20,43

Figure 3D shows the presence of both bias and scatter when
the methods were compared.
Correlation between CYPs and UGTs Protein Ex-

pression and Enzymatic Activity. The correlation between
protein abundance quantified by the label-free approach and in
vitro enzymatic activity was assessed for all CYP and UGT
enzymes for which activity data were available. Correlations
were deemed strong when the values correlated well (Rs > 0.60
with statistical significance against a Benferroni-corrected
cutoff p-value) and demonstrated limited scatter (R2 > 0.30).
The results demonstrated strong, significant, and positive
correlation between abundance and enzymatic activity across
all CYP enzymes (Figure 4A). These correlations are better
than those observed in a previous study using a targeted
QconCAT strategy,11 thus highlighting the importance of the
selection of peptide for quantification (Supplementary Tables
13−15). Strong positive correlation between protein abun-
dance and enzymatic activity was also seen for two UGT
enzymes, UGT1A3 and UGT1A4, with moderate positive
correlation for the remaining UGT enzymes (Figure 4B).
These correlations are comparable with those observed using a
targeted AQUA strategy,20 which assessed correlation in a

larger sample size (n = 59) compared to the current study (n =
23).

Covariates of Expression of Liver Enzymes and
Transporters. Trends in the expression of enzymes and
transporters were assessed with reference to several factors,
including sex, age, genotype, smoking, alcohol consumption,
and body mass index (BMI) of donors. Demographic and
clinical information on donors is provided in Supplementary
Table 1. There were no significant differences in expression of
enzymes between male and female donors (Figure 5A,B); the
seemingly higher levels of CYP3A4 and 3A7 in female donors
did not reach statistical significance (Mann−Whitney U-test, P
> 0.05). A declining trend of expression with age was observed
for enzymes and transporters, which did not reach statistical
significance due to extensive scatter of the data, except for a
few examples, including UGT2B15 (Figure 5C). Smoking and
drinking did not seem to affect expression of enzymes;
however, the number of smokers (n = 4) and regular alcohol
consumers (n = 3) among the donors was very low for
statistical assessment. The effect of genotype on expression was
demonstrated by CYP3A5, with 16-fold higher levels (Mann−
Whitney U-test, P < 0.001) observed with *1/*3 genotype
compared to its mostly inactive *3/*3 counterpart (Figure
5D). The effect of BMI was assessed in three categories
(healthy weight, BMI 18.5−25 kg m−2; overweight, 25−30 kg
m−2; and obese >30 kg m−2), and expression of enzymes and
transporters tended to decline with increasing BMI (Figure
5E). Nonparametric (Kruskal−Wallis) ANOVA showed differ-
ences with borderline statistical significance for CYP2E1 (P =
0.08) and statistically significant differences for UGTs 1A3,
1A4, and 2B10, and transporters SLC27A2 and SLC27A5 (P <
0.05). Post hoc Mann−Whitney U-test showed statistically
significant differences between BMI categories for CYP2E1,

Figure 6. Heat maps showing the abundance levels of drug metabolizing cytochrome P450 (A) and UDP-glucuronosyltransferase (B) enzymes in
the microsomal samples. Cluster generation was based on rank-order correlation of normal log-transformed expression data. Blue shows low
abundances and red high abundances. The red shaded boxes denote the main correlation clusters in the two enzyme families. Examples of
significant correlations within CYP and UGT data are shown in panels C and D, respectively. Strong correlations are shown in red and moderate
ones in blue. Correlation statistics are provided in Supporting Information. Abundance levels are expressed in picomole per milligram of HLM
protein.
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UGTs 1A3, 1A4, and 2B10, and SLCs 27A2 and 27A5 (P <
0.05). The average age for the three categories was 42.3, 46.1,
and 55.4 years, so the effect of BMI may have been
confounded by age.
Correlations of Expression between Hepatic Drug-

Metabolizing Enzymes and Transporters. Patterns in the
expression of enzymes and transporters were also assessed for
potential intercorrelation at the protein level. The heat map in
Figure 6 shows normal log-transformed abundance levels of
cytochrome P450 enzymes (Figure 6A) and UGT enzymes
(Figure 6B). The clustering method was based on rank-order
correlation. Examples of correlations in the CYP and UGT
data sets are shown in Figure 6C,D, respectively. Observed
intercorrelations between CYP enzymes included CYP2C8/
CYP2B6 (Rs = 0.69, P = 0.0003; R2 = 0.30); CYP3A4/
CYP3A5*1/*3 (Rs = 0.90, P = 0.0004; R2 = 0.74) and
CYP2A6/CYP3A4 (Rs = 0.67, P = 0.0009; R2 = 0.29). UGT
correlations included UGT1A4/UGT1A9 (Rs = 0.63, P =
0.001; R2 = 0.23) and UGT1A4/UGT2B4 (Rs = 0.63, P =
0.001; R2 = 0.29). Cross-family correlations were overall weak-
to-moderate and included CYP3A4/UGT1A1 (Rs = 0.53, P =
0.01; R2 = 0.40), which was previously reported to be
moderate in a targeted experiment.11 These correlations are
related to common regulatory mechanisms of gene expression,
and the findings of this study are confirmatory of previously
reported correlations.9,11

Intercorrelations between hepatic drug transporters included
ABCC2/ABCC3 (Rs = 0.81, P = 0.006; R2 = 0.12); SLC29A1/
SLC29A3 (Rs = 0.78, P = 0.03; R2 = 0.48) and ABCC6/
SLC22A9 (Rs = 0.81, P = 0.002; R2 = 0.54). However, the
number of sample pairs for strong and significant correlations
was low (n = 7−12), which may require confirmation with
higher numbers of samples. Only one of the uncovered
correlations, ABCC2/ABCC3, was previously reported to be
strong.44 Once confirmed, correlations of expression levels of
enzymes and transporters can be used in more realistic
simulations of drug clearance and drug−drug interactions, as
demonstrated previously with several examples of CYP
enzymes.45,46

Evaluation of Similarity between Biological Samples.
Similarity between biological replicates of the 23 biological
samples was also evaluated looking at the proteome profiles
using PIP and percentage identical proteins (PIPr) for all pairs
of samples, and the results are shown in Supplementary Figure
3. PIP varied between 41% and 66%, and PIPr varied between
70% and 83% (Supplementary Table 3). Given the consistency
in the methodology used, these variations are likely to reflect
biological differences. Supplementary Figure 3 shows cluster
analysis of data at both the peptide and protein levels,
suggesting agreement between peptide and protein data, with
two distinct clusters identified by hierarchical cluster analysis
(HCA) and principal components analysis (PCA). The data
form two clusters, but the relationship between the members
of the clusters is, at this stage, unclear. There was no clear
correlation with demographic and clinical data; although the
small cluster contains largely younger, healthier individuals
who were not taking any medication.

■ DISCUSSION
In contrast to targeted proteomics where only a predefined set
of proteins can be quantified, label-free proteomics allows us to
simultaneously quantify a large subset of the proteome in an
individual, leading to a systems-level understanding of the

cellular physiology. However, obtaining reproducible and
accurate results using the label-free approach requires mass
spectrometers capable of delivering high mass accuracy, liquid
chromatography platforms able to deliver highly reproducible
retention times, and sophisticated software able to minimize
technical variability by allowing accurate retention time
alignment between multiple runs.17,18 In this study, the use
of modern instrumentation with the above-mentioned
capabilities along with improvements in sample preparation
has allowed the quantification of more than 2200 proteins in
human liver microsomes including 45 proteins involved in the
metabolism and transport of drugs and other xenobiotics.
CYPs and UGTs are the proteins primarily involved in drug
metabolism in the human liver. In this study, several CYPs and
UGTs were found in the human liver microsomes. In
agreement with published data, the highly expressed CYPs
were CYP2E1, CYP2C9, CYP2C8, CYP3A4, and
CYP2A6.6,38−40 In this study, CYP3A43, a well-known drug-
metabolizing enzyme, was also measured but only in fewer
than seven individuals. In agreement with published data, the
most highly expressed UGT was UGT2B7, followed by
UGT1A4, UGT2B4, UGT1A1, and UGT2B15.6−10,38,39

Where literature data are available, the quantification of the
ABC and SLC transporters in this study is also in
agreement.15,47,48

A number of drug metabolizing enzymes (CYPs 2A13 and
4F12) and drug transporters (SLCs 16A2, 22A18, 29A3, and
31A1) were quantified for the first time. CYP2A13 is
responsible for metabolic activation of many tobacco-specific
carcinogens and similarly to CYP1A2 can also metabolize 4-
aminobiphenyl, phenacetin, and aflatoxin B1.49 CYP4F12 can
metabolize arachidonic acid and ebastine.50 SLC16A2 is
known to have a profound physiological role in thyroid
hormone transport and specific substrates for this transporter
are thyroxine, diiodothyronine, and triiodothyronine.51

SLC22A18 has a role in the transport of chloroquine and
quinidine-related compounds.52 SLC31A1 is a copper trans-
porter that mediates the flux of cisplatin and other platinum
anticancer drugs.53 Finally, SLC29A3 is a transporter involved
in mediating equilibrative diffusion of nucleoside drugs, such as
cladribine, fludarabine, cytarabine, and gemcitabine, across the
plasma membrane.54 The ability to quantify novel targets such
as those reported in this study is one of the primary advantages
of label-free quantification methodology.
In some previous studies, CYP4A11 was included in the

quantified drug metabolizing enzymes,6,15 mainly because
polymorphisms in CYP4A11 have been associated with
hypertension/cardiovascular disease, which can have an effect
on choice of therapeutic drugs.55 In this study, although
CYP4A11 was successfully quantified, it was not considered to
be a drug metabolizing enzyme. We also quantified several
proteins the polymorphisms of which are associated with
several diseases, such as UGT1A1 (Gilbert’s syndrome) and
ABCC2 (Dubin−Johnson syndrome), which in turn could
affect the choice of therapeutic drugs prescribed. Some
examples of proteins involved in disease development are
shown in Supplementary Tables 8 (CYPs), 9 (UGTs), 10
(ABC transporters), and 11 (SLC transporters). However,
further evaluation of these proteins is beyond the scope of this
study.
The human liver microsomal samples used in this study have

previously been used to quantify CYPs and UGTs using
targeted proteomics approaches. Overall, there was good
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agreement in protein abundance measurements between the
label-free approach used in the present study and the previous
targeted proteomic approaches; nonetheless, the results are not
identical. This can be due to several factors. First, label-free
quantification assumes a uniform correlation between peptide
peak intensity and its abundance, which is not true since
different peptides present at the same concentration generate
mass spectrometric signals of different intensities.12 The Hi-3
method can theoretically offset peptide-specific bias to some
degree by using the median of the three most intense signals
for each protein. Taking this into account, in contrast to
targeted proteomics, label-free analysis is not intrinsically an
absolute quantification strategy. Second, differences in
abundance of proteins quantified using label-free and targeted
proteomics may be affected by the proteins and peptides used
as standards for quantification. In particular, the choice of
signature peptides for targeted quantification of CYP, UGT,
and transporter proteins is challenging and relies on stringent
criteria. We compared the peptides used for label-free analysis
with those used for targeted quantification (where available),
and there was limited overlap between the two sets
(Supplementary Tables 13−15). In addition, appraisal of the
set of peptides used for the global analysis indicated their
suitability as surrogates. Most importantly, the discrepancies in
observed protein abundances may well be driven by differences
in workflows used for sample preparation (Supplementary
Table 17) with no consensus on standardized methodology. In
studies involving drug metabolism in the liver, protein
abundances obtained from mass spectrometric analysis are
normalized to the mass of liver microsomal fractions. However,
the purity of microsomal fractions is not typically reported,
which makes interlaboratory comparisons of results quite
challenging. Although only 19% of the results were within the
bioequivalence range of 0.8- to 1.25-fold,43 which is extremely
strict for this purpose, in the majority of cases (67% of all
ratios), the two methods yielded a fold difference of less than
3.20 Analysis of the AFE and AAFE showed that the untargeted
methodology gives systematically lower results than the
targeted methods for UGTs but not for CYPs. In principle,
we would expect targeted methodology to yield more accurate
quantification, because the standards are simple isotopomers of
the peptides being assessed, whereas untargeted methods rely
on medians of dissimilar standards. In practice, poor choice of
standards, transitions, or molar ratio of standard to sample can
compromise targeted measurements, and only the last of these
applies to untargeted experiments. Both sets of measurements
show good agreement with activity data, but the activity data is
not based on absolute amounts of enzymes (CYPs or UGTs)
so cannot be used to arbitrate between the proteomics
measurements. Nevertheless, assessment of correlations
between protein abundances estimated by the label-free and
targeted approaches indicated that the data were generally
well-correlated, as shown in Supplementary Table 16.
The real advantage of label-free measurements, especially

when acquired using state-of-the-art mass spectrometry, is that
a very large number of proteins may be quantified
simultaneously. The additional proteins include markers of
different cell types and cellular components, enabling an
assessment of the purity of biological samples not immediately
available by other methods. Human liver microsomes were,
until recently, thought to be composed predominantly of
endoplasmic reticulum from the parenchymal hepatocytes.56

Discrepancies in the total number detected in liver systems, as

reported previously,15 may well be due to the nature of the
system being analyzed, with analyses of whole cell lysates
generally identifying higher numbers of proteins compared to
enriched fractions, such as microsomes. Other differences can
be attributed to several methodological factors that can affect
every step of the experimental workflow. Recently, it has been
shown that microsomal fractions are typically heterogeneous,
enriching endoplasmic reticulum but also proteins from other
cellular compartments.29 The reliability of quantification of
proteins of interest may therefore be compromised by
variability in the levels of nonreticular proteins. On the
positive side, the contamination by other cell types and cellular
components was very consistent across these samples, ranging
from 22% to 32%. Label-free methodology is expected to be
particularly powerful when microsomal preparations from
different sources are compared. Cytosolic enzymes involved
in drug-metabolism (e.g., sulfotransferases or glutathione
transferases) were also detected in the microsomal fractions;
however, since the cytosol represents a contaminant to
microsomal preparations, these abundance data should be
established in a more representative fraction, such as, cytosol
or homogenate, in order for these data to be used in systems
pharmacology modeling and extrapolation exercises.
Drug-metabolizing enzymes and transporters have histor-

ically been quantified in units of picomole per milligram of
microsomal protein. This is also the case in this manuscript.
We have previously shown that varying expression of the most
abundant proteins can affect the apparent abundance of the
proteins involved in drug metabolism and transport, when
expressed as picomole of protein per milligram of microsomal
protein.29,37,57 We and others have therefore advocated the use
of picomole per gram of tissue as a way of overcoming the
effects of the most abundant proteins in the human liver
microsomes on absolute quantification of the abundance of
drug metabolizing enzymes and transporters.29,37,57 The
present study points to a still more important reason for a
change in unit, the possibility of varying amounts of
contamination. There are, of course, limitations to using tissue
mass as a standard for these measurements, although the
literature is encouraging.
Simulations of drug trials rely on the use of scaling factors,

including abundance levels, with realistic variability and
correlations with clinical and demographic factors.5 Our data
revealed large levels of interindividual variation across CYP
enzymes (4−340-fold), UGT enzymes (5−70-fold), ABC
transporters (7−200-fold), and SLC transporters (4−27-fold),
highlighting the importance of elucidating and incorporating
sources of variability. There were no significant sex-related
differences in abundance of enzymes and transporters,
consistent with a recent meta-analysis of CYP protein
abundance.42 The overall trend of age-related decline in
enzyme and transporter levels, although with no statistical
significance in most cases, seemed to be a consistent
observation, which requires further confirmation. The effect
of age after maturation of expression has previously been
reported to be minimal on abundance and activity of CYP
enzymes per mass of liver.58−60 However, in vivo metabolic
ratios analysis showed a decrease in whole liver metabolic
capacity with age, mirroring the decline in renal function.61

These two observations can be explained by a decline in liver
size to match body size decrease in older adults,62

accompanied by a decrease in the amount of liver protein
per gram of liver.63 Therefore, although the abundance levels
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normalized to microsomal protein content seem minimally
affected, there are indications that whole liver content of such
enzymes and transporters may be affected. This finding is
corroborated by reduced drug hepatic clearance observed in
older patients.64

Out of all the factors examined, genotype is perhaps the
most clinically recognized covariate of expression and activity.
The data in this study confirmed previously highlighted
genotype-specific differences in the expression of CYP3A511,65

and CYP2D6.66 These differences in expression are expected
to propagate to differences in enzymatic activity and therefore
hepatic clearance of substrate drugs of these enzymes. In
addition, our data suggest that higher body mass index (BMI)
is consistent with a decline in the expression of enzymes and
transporters, in line with recent evidence.67 This observation is
consistent with the pro-inflammatory effect of obesity leading
to decreased enzymatic and transporter activity.68 The
analyzed set of samples was mostly from older obese or
overweight donors, which should be considered when using
the generated data.
Although information related to expression covariates has

the potential to improve the accuracy of predicting drug
clearance and drug−drug interactions, it can be argued that
these factors are still not utilized effectively. This highlights the
importance of collecting data on very well-characterized
populations, such as the present data set. Another very useful
aspect of abundance data that has recently been incorporated
into modeling exercises is intercorrelations between individual
proteins.45,46 The data set uncovered several correlations that
can be used to build more realistic systems pharmacology
models, including the intercorrelations CYP3A4/CYP3A5*1/
*3,45 UGT1A4/UGT2B4,69 and ABCC2/ABCC3.44 These
can also be confirmed at the mRNA level,70,71 which further
supports reports of common genetic regulation of expression of
enzymes and transporters. It has been reported that drug
transporter abundances quantified in microsomal fractions are
frequently overestimated. To overcome this problem, the
relative expression scaling factor (REF), which accounts for the
differences between the abundance of drug transporters in
microsomal fractions and those in human hepatocytes, has
been used to improve the accuracy of in vivo drug clearance for
in vitro−in vivo extrapolation.36 Such approaches, when
established, should enable more realistic predictions of the
outcomes of therapy and better design of dosage regimens.29

■ CONCLUSIONS
We describe a label-free proteomic approach for the
quantification of drug-metabolizing enzymes and transporters
in liver, based on high resolution mass spectrometry and
rigorous data analysis. Validity of the data was confirmed
against targeted proteomic data in matched samples and
against enzyme catalytic activity. The method provides highly
comprehensive information that can be used to ascertain the
quality of samples, describe expression covariates, and cluster
donors based on the primary analytes. The information
obtained generally complements that of targeted proteomics,
and the label-free approach enabled quantification of two drug-
metabolizing enzymes and four transporters for the first time.
The pattern of expression supports the view that genotype, age,
and obesity (but not gender) affect the expression of several
drug-metabolizing enzymes and transporters. We expect that
the use of this versatile label-free quantification approach will
increase the availability of accurate and comprehensive protein

abundance information, which will enhance prediction of drug
efficacy and safety using computational models. This in turn
will enable the optimization of dosage of medicines given to
patients to achieve maximal drug efficacy with limited toxicity.
Considering the many existing gaps in QSP models, label-free
proteomics offers a fast solution for simultaneous quantifica-
tion of a wide range of proteins as the first step, which can, in
time, be complemented by more targeted measurements.
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